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Abstract. Model checking has historically been an important tool to
verify models of a wide variety of systems. Typically a model has to ex-
hibit certain properties to be classed ‘acceptable’. In this work we use
model checking in a new setting; parameter estimation. We characterise
the desired behaviour of a model in a temporal logic property and al-
ter the model to make it conform to the property (determined through
model checking). We have implemented a computational system called
MC2(GA) which pairs a model checker with a genetic algorithm. To
drive parameter estimation, the fitness of set of parameters in a model is
the inverse of the distance between its actual behaviour and the desired
behaviour. The model checker used is the simulation-based Monte Carlo
Model Checker for Probabilistic Linear-time Temporal Logic with nu-
merical constraints, MC2(PLTLc). Numerical constraints as well as the
overall probability of the behaviour expressed in temporal logic are used
to minimise the behavioural distance. We define the theory underlying
our parameter estimation approach in both the stochastic and continu-
ous worlds. We apply our approach to biochemical systems and present
an illustrative example where we estimate the kinetic rate constants in
a continuous model of a signalling pathway.

1 Introduction

Modelling biochemical systems is a key activity in Systems Biology [1], for exam-
ple in the area of signal transduction pathways [2]. Models can be used to increase
the understanding of a biochemical network in terms of the interactions between
the components (the topology), or their dynamic behaviour. The representation
of such systems can range from the informal, for example pathway diagrams, to
the formal, which include qualitative and quantitative descriptions — the latter
being stochastic or continuous and requiring kinetic information including reac-
tion rates and concentrations/mass of components [3]. Formal models can permit
both simulation of behaviour as well as the analysis of behavioural properties.
One important issue is how models are obtained, a process that usually in-
volves fitting to some trusted data. Model fitting can involve identification of
alternative topologies [4], choice of types of kinetic laws and formulae, and esti-
mation of kinetic rate constants and initial concentration/mass values [5]. This
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is a challenging task in the biochemical field, especially due to the lack of reliable
quantitative data.

A biologist or biochemist will often be unsure about exact values of biochem-
ical species over time due to the nature of the wet-lab experimental technology,
and will describe behaviour in a semi-quantitative manner. For example, “the
concentration of the protein peaks within 2 to 5 minutes and then falls to less
than 50% of the peak value within 60 minutes”. A significant challenge is how
to automatically build a model which conforms to semi-quantitative behaviour.
Temporal logic is well-suited to formally represent such semi-quantiative descrip-
tions.

In this paper we report on work to use model checking to drive the estimation
of parameter values in biochemical models. We use a probabilistic temporal
logic to describe desired behavioural properties and the MC2(PLTLc) model
checker [6] to compute how closely the behaviour of a model conforms to the
desired behaviour. We use a genetic algorithm to explore model space in order
to generate a set of models which exhibit some desired behaviour. We have
defined a novel extension of PLTL temporal logic [7] in order to permit a fine
grained distance function suitable for use in our model exploration approach.
This enables us to operate over both continuous as well as stochastic models.

Given a model with a fixed topology and ranges of parameter values to be
explored, we can use a genetic algorithm to explore model space and generate
values of kinetic rate constants and initial concentration/masses for which the
model exhibits the desired behaviour. We illustrate this approach by considering
a continuous model of the well-known MAPK signalling pathway stimulated by
EGF [8], and derive values for kinetic rate constants such that the behaviour
conforms to that under NGF stimulation. In doing so we confirm the results of
[8] which showed that the desired results could be achieved by varying only one
parameter, V28, 40-fold however in our approach we perform multi-parameteric
fitting and show that the same desired behaviour can be achieved by varying a
set of kinetic parameters with V28 only requiring a 16-fold increase.

Our approach contributes to the field of systems biology in terms of model
construction from desired behaviour as well as to the field of synthetic biology in
terms of system design and construction from desired behaviour properties [9].
This is the first step in a general approach to automatically constructing models
based on a formal description of desired behaviour of a model.

This paper is organised as follows. The following section outlines the theory
of our approach in both the stochastic and continuous worlds. The next section
describes our computational system for parameter estimation, MC2(GA). We
next present a case study where we estimate the parameters of a model of a
signalling pathway. In doing so, we attempt to answer an important biochemical
question concerning this pathway — what are the underlying model differences
explaining the cell reactions to different signals. We conclude with a summary
of our approach and propose further research ideas.
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2 Theory

This section sets out the theory behind our computational system for parameter
estimation. First we explain the syntax and semantics of the PLTLc temporal
logic. Next, we describe how the desired behaviour of a model can be charac-
terised using PLTLc. Then we define probabilistic domains — the relationship
between the values of a free variable in a PLTLc property and the overall prob-
ability of the behaviour — and show how they can be helpful in characterising
the desired behaviour. Finally, we explain how to build a distance metric of the
distance between the model’s behaviour and the desired behaviour.

2.1 PLTLc Syntax

Linear-time Temporal Logic (LTL) [10] is the fragment of full Computational
Tree Logic (CTL*) [11] without path quantifiers, implicitly quantifying univer-
sally over all paths. LTL has been introduced in a probabilistic setting in [7],
and extended by numerical constraints over real value variables in [12]. PLTLc
combines both extensions, complemented by the filter construct as used in Prob-
abilistic Computational Tree Logic (PCTL) [13] and Continuous Stochastic Logic
(CSL) [14]. We start with the LTL with numerical constraints (LTLc) syntax:
¢ = X |G| Fo|gUd| SRS 6V S| $A | 0| — 0|
value = value | value # value | value > value| value > value |
value < value | value < value | true | false
Numerical constraints over free variables are defined in this logic through the
inclusion of free variables denoted by $fVariable in the definition of value below
— the symbol $ differentiates a free variable from a regular variable. Regular
variables are read-only values which form the behaviour of the model, whereas
free variables are instantiated during the model checking process to the range of
values for which the temporal logic property holds. In our current, implemen-
tation free variables are defined to have integer domains initialised to [0 — o0)
and describe protein concentrations, numbers of molecules and time. Constraints
over free variables, which involve equality/inequality and relational operators,
restrict the domain of the free variable, such that with $X € [0 — o), $X > 5
sets $X to be [6 — o). If there is a constraint over free variables involving real
numbers, then the real numbers are cast to integers. Notice also that disjunction,
conjunction, negation and implication of constraints over free variables are al-
lowed. Finally, the values considered in this logic are integers and real numbers,
and the four basic arithmetic operations over these values:
value ::= value + value | value — value | value x value | value/value |
$fVariable | Variable | function | Int | Real
where Int is any integer number and Real is any real number. In our bio-
chemical pathway analysis we define Variable to be the time dependant value
of the concentration of any biochemical species in the model, either integers for
molecules/levels or real numbers for concentrations, and we define a special vari-
able called time to stand for the values of state time. State time values are the
simulation time points such that we can, for example, express properties relative
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to simulation time. This is especially useful for expressing a property before or
after some event, such as introducing a drug into a cell. We provide the ability
to define any function returning a real or integer value, and in our current sys-
tem we have chosen to implement the two functions, maz and d. The function
max operates over all the values of a species to return the maximum of the
species’ value in the simulation run, thus the peak of a species can be expressed;
Protein = max(Protein). We also define a function d which returns the deriva-
tive of the concentration of the species at each time point, thus increasing and
decreasing species value can be expressed; d(Protein) > 0 and d(Protein) < 0
respectively.

PLTLc enhances LTLc by the inclusion of a probability operator and fil-
ter construct, and the probabilistic interpretation of the domains for the free
variables. The top-level definition of PLTLc is:

¥ = Pa,[6]] Pas[#{SP}]

where ¢ is an LTLc expression. SP is a State Proposition defined to be ¢
without any temporal operator (X, G, F,U, R), and containing no free variables
without a loss of expressivity. Note that the square and curly brackets are part
of PLTLc. Given that < € {>,>, <, <}, Pg, is any inequality comparison of
the probability of the property holding true, for example P>q5. We also per-
mit the expression P—; returning the value of the probability of the property
holding true. We disallow equality testing of the probability, P—, because of the
representation of real values and the semantics of their equality.

We define filters similar to those used in PCTL and CSL. This permits spec-
ifications to refer to the state or states that the property is checked from, rather
than default to the initial state. Hence, for a property of the form ¢{SP}, ¢ is
checked from the first state that SP is satisfied.

2.2 PLTLc Semantics

We introduce the semantics of PLTLc in an informal manner to cater to a wide
audience. The formal semantics of PLTLc are described in full in [6].

The semantics of PLTLc is defined over a finite set of finite paths through
the system’s state space — in our case, stochastic or deterministic simulations,
or time series data recorded in wet lab experiments.

First, let a path 7 be a finite sequence of states describing the behaviour of
a biochemical system, m = s, 51, ..., 8, (n < 00) and 7 be the subsequence of
7 starting from state s;, i < n, thus @ = s;, 8,11, ..., 5,. Bach path in the set
of paths can be evaluated to a boolean value as to whether ¢ or ¢{SP} holds.
When all paths are evaluated, the number of true values in the set over the
size of the set yields the overall probability of the PLTLc property. Hence for a
stochastic model, where the set of paths is typically > 1, the probability is in
the range [0 — 1] and calculated through Monte Carlo approximation, whereas
a continuous model which contains a single path has a probability of either 0 or
1.

Finally, the two PLTLc functions we have chosen to implement, maz(variable)
and d(variable) are defined as follows. maz(variable) calculates the first state
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Smaz in the finite path 7« for which the value of variable is maximal and returns
this value. d(variable) calculates for each state s; in the finite path 7 the deriva-
tive of the value of variable between state s; and s;41. In the case of the final
state in the finite path s, which contains no next state, the derivative is equal
to the derivative of the previous state s,,_1.

2.3 Characterising Biochemical Species’ Behaviour

The behaviour of biochemical species can be described with PLTLc using four
distinct descriptive approaches, with increasing specificity; qualitative, semi-
qualitative, semi-quantitative and quantitative. Qualitative uses derivatives of
biochemical species concentrations/mass and temporal operators to describe the
general trend of the behaviour. Semi-qualitative extends qualitative with rel-
ative concentrations. Semi-quantitative extends semi-qualitative with absolute
time values. Finally, quantitative extends semi-quantitative with absolute con-
centration values. For example, transient activation of a biochemical species
called Protein can be expressed in these approaches:
qualitative: Protein rises then falls
P_; [ d(Protein) > 0U ( G( d(Protein) < 0) )]

semi-qualitative: Protein rises then falls to less than 50% of peak concen-
tration
P_; [ (d(Protein) > 0) U ( G( d(Protein) < 0) A
F( [Protein] < 0.5 % maz[Protein] ) ) ]

semi-quantitative: Protein rises then falls to less than 50% of peak con-
centration at 60 minutes
P_: [ ( d(Protein) > 0) U ( G( d(Protein) < 0) A
F(time = 60 A Protein < 0.5 % max(Protein) ) ) ]
quantitative: Protein rises then falls to less than 100uMol at 60 minutes
P_; [ ( d(Protein) > 0) U ( G( d(Protein) < 0) A
F(time = 60 A Protein < 100) ) ]

In our case study we find that the desired behaviour of the model is most
suited to semi-quantitative PLTLc. In fact, the informal explanation of results
from biochemical experiments bears a striking similarity to semi-quantitative
PLTLc.

2.4 Probabilistic Domains

Each path in the set of paths is also evaluated to a domain of validity, Dy o, g{spy C
N" for n free variables in the PLTLc property, $/Vary,$fVars,...$fVar,. The
domain of validity is defined such that for all valuations v of the n free variables,
where v € Dy o, 4sp}, the property ¢ or ¢{SP} as appropriate holds true for
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the path. Thus each path has an associated domain of validity, with paths re-
sulting in a boolean value of true having a non-empty domain of validity, i.e.
for these paths there must be valuations of the variables for which the property
holds.

After the set of domains of validity is evaluated from the set of paths, a
probabilistic domain for each of the n free variables in the PLTLc property is
calculated. A probabilistic domain associates with each integer value in the do-
main the probability of the property holding true for that value. If the PLTLc
property evaluates to a probability p, then the maximum possible probability of
any value in the probabilistic domains is p, such that a property with 0 probabil-
ity has probabilistic domains with 0 probability for all values. The probabilistic
domain of free variable $fVar; is calculated by iterating through each integer
value I in the probabilistic domain. A count is performed on the set of domains
of validity for the number of domains of validity which contain at least one
valuation v with v($fVar;) = I. This number over the size of the set is the
probability of the value I in the probabilistic domain of $fVar;.

In the case that the system is described by a stochastic model, the probabilis-
tic domains are calculated through Monte Carlo approximation — the number of
occurrences of a value for a free variable in each domain of validity in the set
over the size of the set. In the case of a continuous model where the size of the
set is 1, the probabilistic domain contains probabilities 0 and 1 and can equally
be represented by a probabilistic domain or a regular domain.

The semi-quantitative property from the previous section can be enhanced
with free variables:

semi-quantitative with free variables: Protein rises then falls to less
than 50% of peak concentration at 60 minutes

P_- [ (d(Protein) > 0) U ( Protein > $PeakConc N G( d(Protein) < 0)
A F(time = 60 A Protein < 0.5%max(Protein) ) ) |

where the probabilistic domain of $PeakConc associates with each value in
the domain the probability of a peak of at least that value.

2.5 Distance Metrics

The distance between a model’s behaviour and the desired behaviour can be
calculated using a distance metric. We define a metric for the distance, with
respect to some property ¢, from the behaviour of the model M to the desired
behaviour Mges. The distance metric, written dy (M, Mges), should satisfy the
metric properties:

d(xz,y) > 0 for x #y wr.t. ¢, d(z,y)=0for z =y wrt. ¢

d(z,y) = d(y,z) for all z,y , d(z,y) <d(x,z)+ d(y,z) for all z,y, 2

The metric is domain and behaviour specific, and can be based on the prob-
ability of the property or the probabilistic domains.

Perhaps the simplest definition of the metric is the square difference between
the model’s probability of exhibiting some behavioural property ¢, P(v) and
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desired probability Pyes(1)). For example, we may want the property ¢ to always
hold in which case Pyes(1)) is 1. The distance function is then written:

dw(M» MdES) = |P('l/)) - PdeS('l/))‘z

This approach works well in the stochastic world where the model exhibits
many behaviours and the probability of the property is in the range [0 — 1].
However, in the continuous world there is a single behaviour and the probability
is either 0 or 1, thus the metric is too coarse grained to be used in a search
algorithm in the continuous world. To be useful in the search algorithm, the dis-
tance metric should return a value which indicates whether altering the current
model has caused its behaviour to be closer to the desired behaviour, therefore
providing a gradient for the search algorithm to ascend.

Definitions of the distance metric over probabilistic domains of free variables
can result in finer grained distance values, crucial for distance metrics in the
continuous world. For a free variable $X in a property 1, we can compare the
probabilistic domain in the model $X with the desired probabilistic domain
$X 4es. To do so, we use the residual sum of squares function, RSS:

RSS($X,$Xges,m,n) = > i |$X (i) — $X ges(i)]?

where m to n is some sub-section of the domain being assessed. Hence, we
could desire that a free variable describing the peak concentration value in tran-
sient behaviour $PeakConc of a continuous model is at least 50uMol. Tt is then
simple to set up a desired probabilistic domain $PeakConcg.s with probability
1 for values 0 to 50. A call to RSS($Peakconc, $PeakConcyes,0,50) would then
return a value of how close the current model is to having its peak concentration
value at least value 50uMol.

We can implement a distance metric using the RSS function for any number
of free variables we define in our PLTLc property. In the case that we wish
to optimise more than one probabilistic domain, we normalise the RSS values

between 0 and 1: RSS(SX,$X ) RSS(8Y,8Y, )
9 esy 11, TV ) esy Uy U
dw(MdeES) = . d

(n—m) (v—u)

3 Computational System

We implemented a computational system called the Monte Carlo Model Checker
with a Genetic Algorithm, MC2(GA). The purpose of this computational sys-
tem is to estimate the parameters of a model to make it exhibit desired be-
havioural properties. A genetic algorithm is used to move models through pa-
rameter space to minimise their distance to the desired behaviour, checked using
a model checker.

A genetic algorithm [15] operates over a population of individuals, each of
which is represented by their chromosome containing one or more genes. The
individuals have an associated fitness based on how “good” their genes are. A
selection of individuals from the current population is performed which will be
used to create the next generation. Genetic operations on the chromosomes of
these selected individuals (reproduction, crossover and mutation) is used to build
a next generation with (hopefully) improved overall fitness.
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Each model in our MC2(GA) system has a fixed structure and is represented
by a chromosome, which is a set of kinetic rate constant values to be estimated
(the model’s genes) within predefined ranges. The chromosome could equally
include initial concentrations/masses.

In the initial generation, a population of models is created by assigning to
each model random values within the ranges for the kinetic rate constants. The
number of models in the population should be proportional to the size of the
parameter space being explored. Each model in the population is evaluated to
a fitness value related to the distance of its behaviour to the desired behaviour,
hence a model with a smaller distance to the desired behaviour has a higher
fitness. This is achieved by formalising the desired behaviour in temporal logic
and the novel use of a model checker to calculate the distance of the model to
the behaviour. Our approach is to vary models’ kinetic rate constant values in
order to maximise their fitness values.

After the initial generation which builds a population of models with their
related fitness values, a subset of the population is selected to survive. Roulette-
wheel selection is used where models in the population are chosen to survive
probabilistically, with fitter models having a higher probability of survival. This
is done to keep a small number of less fit models in the population such that we
do not converge on a solution too early. If the computational system is exploring
a high dimensional parameter space, it is important to maintain good coverage
of this large space. The population for the next generation is created from the
selected models by performing genetic operations on these models’ chromosomes
representing the kinetic rate constant values. A chromosome may be duplicated
(reproduction), a section between two chromosomes may be swapped (crossover)
or a section of one chromosome may be randomly altered (mutation) within
preferred constraints. The models in the new population are evaluated to their
fitness values and then go on to form the next generation.

The best and average fitness value of a model in the population should in-
crease over successive generations of this algorithm. There are stochastic ele-
ments to the algorithm however, including random mutation and probabilistic
selection of models for the next generation. Hence, it is not always the case that
there will be a continual increase in best or average fitness value, though the
general trend should increase. Various stopping conditions in this algorithm can
be used — we choose to stop after the best fitness of a model in the population
has not changed significantly after 10 generations or after a maximum of 100
generations has elapsed.

A population of models with their respective fitness values is returned upon
termination of the genetic algorithm. This is quite a powerful result of parameter
estimation. By the very nature of a genetic algorithm, we get a set of candidate
solutions, which may be representative of more than one general solution type.
Hence, with the semi-quantitative description of the desired behaviour, we can
get many models, possibly grouped into distinct sub-populations, which exhibit
the desired behaviour.
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Although any search algorithm which uses a fitness function could be used in
this approach, we have chosen a genetic algorithm because it avoids being lost
in local minima, which is likely in high dimensional parameter spaces. A genetic
algorithm avoids this by maintaining a population of candidate solutions and
probabilistically keeping some low fitness solutions in the population between
generations.

Our computational system, MC2(GA), currently operates over continuous
models only. The desired behaviour of a model is expressed in the PLTLc tem-
poral logic. Models are evaluated to a fitness value through interfaces to the
continuous simulator, BioNessie Lite [16] and the Monte Carlo Model Checker
for Probabilistic LTLc properties MC2(PLTLc) [17]. The model is simulated for
a predefined amount of time and the simulation output is checked for the desired
behaviour using MC2(PLTLc). A numerical value for the fitness of the model
based on the result of model checking can be computed using the probability of
the behavioural property and the probabilistic domains of free variables in the
property. The fitness function using the probabilistic domains of free variables
has been implemented using the theory described in Section 2.5. We employ the
Java Genetic Algorithms Package (JGAP) [18] to move our population of models
through parameter space in order to maximise their fitness.

4 Case Study: MAPK Pathway

We illustrate our technique to parameter estimation with a continuous model of
the MAPK pathway.

4.1 Biochemical Motivation

The EGF signal transduction pathway conveys Epidermal Growth Factor sig-
nals from the cell membrane to the nucleus via the MAP Kinase cascade [2]. The
model of the pathway in PC12 cells written in Systems Biology Markup Lan-
guage (SBML) [19] is the subject of [8]. The same core MAPK cascade can also
be stimulated by Nerve Growth Factor (NGF). The reaction of the cell to EGF
stimulation is cell proliferation, however the response to NGF is cell differentia-
tion. The active ligand-bound receptor acts as a kinase for the Shc protein. The
active Shc and GS complex (ShcGS) binds with the inactive RasGDP complex
which enables Son of sevenless homologue protein (SOS) to convert RasGDP to
its active RasGTP form. RasGTP acts as a kinase to phosphorylate Raf, which
phosphorylates MAPK/ERK Kinase (MEK), which in turn phosphorylates Ex-
tracellular signal Regulated Kinase (ERK). Feedback regulation of the pathway
is through ShcGS dissociation catalysed by phosphorylated ERK. The EGF sig-
nal transduction pathway produces transient Ras, MEK and ERK activation
whereas NGF stimulation produces sustained activation. The underlying differ-
ences of the models describing EGF and NGF stimulation is of key interest to
biochemists.
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The work in [8], referred to from now on as the original paper, attempted
to discover the quantitative differences in initial concentrations and kinetic rate
constants between models of these pathways with fixed topology. The authors
varied the initial concentrations and kinetic rate constants within biochemically
sensible ranges. Simulation was performed with the model using each parameter
value in the range and the output was manually inspected for sustained Ras,
MEK and ERK activation. A result of this work was the finding that a 40-fold
increase in the kinetic rate constant of SOS dephosphorylation can change the
behaviour of the model from transient activation to sustained activation.

We suggest that this analysis could be improved by constructing a formal
definition of the desired behaviour in temporal logic, and using model checking
of the desired behaviour to replace the manual inspection of the simulation
outputs. This facilitates the automation detection of a model which exhibits the
desired behaviour. We employ this in our computational system, MC2(GA), to
vary many kinetic rate constants in the model in parallel to estimate a parameter
set of the NGF signal transduction pathway.

4.2 Characterising the Desired Pathway Behaviour

The behaviour of sustained Ras, MEK and ERK activation arising from NGF
stimulation observed in wet-lab experiment was described in rather informal
statements in the original paper [8].
“The level of RasGTP rapidly reaches a maximum of up to 20% of total Ras
within 2 min [then] the level of RasGTP is sustained at around 8% of total Ras.”
Similar statements were made about sustained MEK and ERK activation.
We have formalised these statements using semi-quantitative PLTLc such that a
model could be automatically checked for these behaviours using the MC2(PLTLc)
model checker. We formalised these statements in a way to account for biological
error by relaxing the constraints, for example that the stable level of RasGTP
is 8% to between 5% and 10%:
sustained Ras: Active Ras peaks within 2 minutes to a maximum of 20%
of total Ras and is stable between 5% and 10% from at least 15 minutes
P_- [ ( d(active Ras) > 0 ) A ( d(active Ras) > 0 ) U (time < 2 A
active Ras > 0.15xtotal Ras A active Ras < 0.2xtotal Ras A
d(active Ras) < 0 A ( d(active Ras) < 0 A time < 15) U ( G(
(active Ras) > 0.05xtotal Ras A active Ras < 0.10xtotal Ras ) ) )]

where the protein RasGTP is found in isolation and in two complexes, thus active
Ras = RasGTP + Ras_Raf + Ras-GAP and total Ras = RasGTP + Ras-Raf +
Ras-GAP + RasGDP + Ras_ShcGS.

sustained MEK: Active MEK peaks within 2 to 5 minutes and is stable
between 40% and 50% of peak value from at least 15 minutes
P_; [ (d(MEKPP) > 0) A (d(MEKPP) > 0) U (time > 2 A time < 5 A
d(MEKPP) < 0 A (d(MEKPP) < 0 A time < 15) U ( G(
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MEKPP > 0.40xmaz(MEKPP) A MEKPP < 0.50xmaxz(MEKPP))))]

sustained ERK: Active ERK peaks within 2 to 5 minutes and is stable
between 85% and 100% of peak value from at least 15 minutes
P_; [(d(ERKPP) > 0) A (d(ERKPP) > 0) U (time > 2 A time < 5A
d(ERKPP) < 0 A (d(ERKPP) < 0 A time < 15) U ( G(
ERKPP > 0.85 * maz(ERKPP) ) ) )]

4.3 Identification of Critical Parameters

The work reported in the original paper [8] varies parameters individually in
the model and notes the effect on sustained Ras, MEK and ERK activation
by manual inspection of simulation output. We performed a similar analysis in
an automated fashion, which made it easy to count the number of parameter
values in a particular parameter range that gave our desired behaviour. Hence,
rather than a simple yes/no answer, we were able to quantify the significance of
a particular parameter regarding a particular behaviour. We used this feature to
identify a set of critical parameters to vary in our MC2(GA) system. A further
benefit of using an automated approach to detect desired output rather than
manual inspection is that we can explore many possible behaviours, generated
for example by varying one parameter within a large range.

In the absence of biochemical knowledge of acceptable ranges of kinetic rate
constants, we varied each kinetic rate constant in the range & 2 orders of magni-
tude from their original value. We simulated the continuous model for 60 minutes
using 1,000 parameter values linearly spaced in the range. This produced a set
of 1,000 simulation outputs, and we checked each one for the behaviour of sus-
tained Ras, MEK and ERK activation expressed in PLTLc. We then computed
the fraction of simulation outputs which satisfy the behavioural property over
the number of simulation outputs. We call this fraction the parameter’s signifi-
cance value, such that a higher value represents parameter more likely to exhibit
the desired behaviour. Each kinetic rate constant in the model was varied indi-
vidually to produce their significance value.

Any kinetic rate constant with at least one non-zero significance value for
sustained Ras, MEK or ERK is called a critical parameter. The identified critical
parameters are listed in Table 1 along with their respective significance values.
Although we ignored initial concentration parameters as they had little effect on
sustaining activation in the original analysis, our approach can analyse initial
concentrations in the same manner as kinetic rate constants.

From the significance values it is clear that although sustained Ras and ERK
activation is quite possible, sustained MEK activation is more difficult to achieve.
In fact, when varying parameters individually it was only possible to achieve this
using the kinetic rate constant for SOS dephosphorylation, V_28. This was the
solution found in the original paper [8] and we note that it has the highest sum
of the three significance values. We suspected that other parameter sets could
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sustained [sustained|sustained

parameter Ras MEK ERK
V_20 0.01 0.0 0.001
V_24 0.076 0.0 0.0

V_25 0.023 0.0 0.001
V.27 0.614 0.0 0.0

V_28 0.478 0.151 0.679
k114 0.0 0.0 0.778
k1.16 0.0 0.0 0.001
k118 0.001 0.0 0.807
k2_18 0.191 0.0 0.0

Km_20 0.001 0.0 0.797
kcat_21 0.001 0.0 0.688
kcat_23 0.001 0.0 0.186
Km_23 0.121 0.0 0.0

Km_25 0.001 0.0 0.157
kcat_26 0.0 0.0 0.001
Km_26 0.0 0.0 0.005

Table 1. The identified critical kinetic rate constant parameters in the model with
their significance values with respect to sustained Ras, MEK or ERK.

produce our desired behaviour and thus we varied several parameters in parallel
using our computational system.

4.4 Genetic Algorithm

We first implemented a fitness function for use in MC2(GA) to describe how
close a model is to sustained activation. The descriptions of sustained Ras, MEK
and ERK activation given earlier were not particularly helpful in the continuous
setting due to the probability being simply 0 or 1. A fitness function based on
a description which includes free variables allows greater expressivity using the
probabilistic domains. Hence, we have rewritten these descriptions of sustained
behaviours using free variables:
sustained Ras with free variables: Active Ras peaks within 2 minutes to
a maximum of 20% of total Ras and is stable between any value in $RasT aill
and any value in $RasTail2 from at least 15 minutes
P_, [ ( d(active Ras) > 0) A ( d(active Ras) > 0 ) U (time < 2 A
active Ras > 0.15xtotal Ras A active Ras < 0.2xtotal Ras A
d(active Ras) < 0 A ( d(active Ras) < 0 A time < 15) U ( G(
active Ras > $RasTaill A active Ras < $RasTail2 ) )) |

sustained MEK with free variables: Active MEK peaks within 2 to 5
minutes with a peak greater than concentration 20,000 and is stable between any
value in $MekppTaill and any value in $MekppTail2 from at least 15 minutes
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P_; [(d(MEKPP) > 0) A (d(MEKPP) > 0)U (time > 2 A time < 5 A
MEKPP > 20000 A d(MEKPP) < 0 A (d(MEKPP) < 0 A time < 15)
U ( G( MEKPP > $MekppTaill N MEKPP < $MekppTail2) ) )]

sustained ERK with free variables: Active ERK peaks within 2 to 5
minutes with a peak greater than concentration 350,000 and is stable above any
value in $ErkppTail from at least 15 minutes

P_; [(d(ERKPP) > 0) A (d(ERKPP) > 0) U (time > 2 A time < 5A
ERKPP > 350000 A d(ERKPP) < 0A (d(ERKPP) < 0Atime < 15)U
( G( ERKPP > $ErkppTail )) )]

The property ¥ in our case study was the conjunction of the sustained Ras,
MEK and ERK properties expressed with free variables above. To explain the
addition of free variables in these properties we consider the active ERK shown in
Figure 1. This figure illustrates the relationship of a continuous simulation output
of ERKPP to the probabilistic domains of the free variable $ErkppTail and
the desired probabilistic domain $ErkppTail,.s. The values in the probabilistic
domain $FErkppTail with probability 1 are in the range of values from 0 to
the tail height. Our desired behaviour of the property is that it peaks within
2 minutes to a concentration of greater than 350,000 (defined in the PLTLc
property) and that the tail of the peak remains within 85% of the peak height.
We observe a tail characterised by $ ErkppTail and now characterise our desired
tail of at least 85% of the peak height, $ ErkppTailge.s. This is done by setting
values from 0 to 85% of the peak height value in the probabilistic domain of
$ErkppTailges to probability 1. Hence if the RSS between the model’s tail and
the desired tail is 0, then the model’s tail is within 85% of it’s own peak height
(our desired property) and if the model’s tail falls to concentration 0, then the
distance is value 85% of the peak height:

erkppDistance = RSS($ErkppTail, $ErkppTailges, 0, max($ErkppTailges))

Next, recalling that sustained active MEK is defined to be stable between 40%
and 50% of the peak, we set the desired probabilistic domain of $MekppTaill
to have probability 1 for values 0 to 40% of the peak value and the desired
probabilistic domain of $MekppTail2 to have probability 1 for values 50% to
100% of the peak value. The distance of the active MEK behaviour was then:

mekppDistance = RSS($MekppTaill, $M ekppT aillges, 0, max($MekppTaill ges))
+RSS(SMekppT ail2, $M ekppT ail2ges, min($$MekppT ail2ges ),
max($$MekppTail2qes))

Finally, recalling that sustained active Ras is defined to be stable between
5% and 10% of total Ras, we set the desired probabilistic domain of $ RasT aill
to have probability 1 for values 0 to 5% of total Ras and the desired probabilistic
domain of $ RasTail2 to have probability 1 for values 10% to 100% of total Ras.
The distance of the active Ras behaviour was then:

rasDistance = RSS($RasT aill,$RasT aillges, 0, mazx($SRasT aillges))+

RSS($rasTail2, $rasTail2qes, min($rasTail24es), max($rasTail2qes))



14 Donaldson, Gilbert

Simulation Output of Probabilistic Domain of
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Fig. 1. Continuous simulation output of active ERK (left) with the probabilistic do-
main of free variables $ErkppTail (middle) and the desired probabilistic domain
$ErkppTailges (right). The probabilistic domain of $ErkppTail contains probability
1 for all values from 0 up to the tail height and the desired probabilistic domain
$ErkppTailges contains probability 1 for all values from 0 up to 85% of the peak
height.

The overall metric describing the distance between a model and the desired
behaviour can now be defined by averaging the sum of the normalised individual
distances, erkppDistance, mekppDistance and rasDistance, and ranges from 0
(identical) to 1:

__ (erkppDistance mekppDistance rasDistance
d"l’(M7 Mdes) - (SS%ERKPeak + 90% M EK Peak + 95%TotalRas)/3

Note that if the model does not satisfy the PLTLc property — i.e. it does not
peak or does not peak within the concentration or time constraints — then all
values in the probabilistic domains of the free variables are set to probability 0,
thus the distance is 1.

The definition of a model’s fitness has opposite semantics from a distance
metric — i.e. a high fitness value represents a good model. Hence the fitness
function is:

fitness(M, Mges) = 1 — dy (M, Myes)

Finally, we added quantitative constraints to the properties to exclude the
behaviour being observed with insignificantly small concentration values by re-
quiring that both active ERK and active MEK be greater than approximately
half of their peak value in the EGF signalling pathway model. The concentra-
tion of RasGTP is kept to a significant level through its definition stating that
it must be between 15% and 20% of total Ras concentration.

As a proof of concept, we used MC2(GA) with a population of 2,000 models
to estimate the value of the kinetic rate constant V_28 only using the range
of + 2 orders of magnitude from the original value as defined in the previous
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section. We hoped to reproduce the result from the original paper [8] that a 40-
fold increase of V_28 (to value 3,000 molecule™'minute™") produces sustained
activation of Ras, MEK and ERK. The fitness of the best model immediately
converged to value 1 and the genetic algorithm stopped 10 generations after the
convergence, which can be seen in Figure 4. The V_28 value against respective
fitness of the models in the final population can be seen in Figure 2. There
is a wide range of V_28 values which produce the desired model behaviour —
the V_28 value proposed in the original paper of 3000 molecule ™ 'minute™" falls
within the range of models with a fitness value 1, which suggests that our genetic
algorithm and behavioural properties are correct.

Model Fitness against Simulation of ERKPP with varying
V_28 Value V_28 values
[=}
] S 4
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Fig. 2. The population of models from the genetic algorithm (left) and simulation
output of three selected models (right). The model proposed in the original paper
(solid) has fitness value 1. Also, the model with lowest (dotted) and highest (dashed)
value of V_28 whilst maintaining fitness value 1 is shown.

We then applied MC2(GA) to find novel parameter sets which exhibit the
desired behaviour. We estimated the values of the 16 critical parameters identi-
fied in the previous section, listed in Table 1. We also applied MC2(GA) to the
critical parameters without V_28, to assess whether V_28 is crucial to achieving
sustained activation. The result of the convergence of these runs are presented
in Figure 4. It can be seen from this figure that if the critical parameters are es-
timated with V_28, then the convergence is quicker and the best model returned
was fitter. The best model returned when estimating the critical parameters had
fitness value 1, whereas with V_28 removed the best model returned had a fitness
value approximately 0.93.

Figure 3 shows the output of one of the best model returned when estimating
the critical parameters with and without V_28. Both behaviours showed good
similarity (visually and in terms of fitness value) to the behaviour of the NGF
signalling pathway outlined in the original paper. We also found that we can
achieve a model with fitness value 1 through a 16-fold increase of V_28, com-
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pared with the original paper’s 40-fold increase, if we also vary the other critical
parameters.

Simulation output of RasGTP Simulation output of MEKPP Simulation output of ERKPP
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Fig. 3. The original model of the NGF signalling pathway (dotted) compared with the
best model returned when varying the critical parameters (solid) and when varying the
critical parameters without V_28 (dashed). The best model returned when varying the
critical parameters only required a 16-fold increase in V_28 to achieve fitness value 1.

Finally we tested how MC2(GA) copes with a high dimensional parameter
space by estimating the values of all 65 kinetic rate constants in the model.
Again, these parameters were varied in the range + 2 orders of magnitude from
their original values. As shown in Figure 4 there is no convergence after the
maximum of 100 generations. However, the best model returned had fitness
value approximately 0.99. This is a strong result that even with such a high
dimensional parameter space, MC2(GA) still found a viable solution.

To give an idea of the computational expense of our system, a single genera-
tion of the genetic algorithm took around ten minutes. Each generation contains
on the order of 2000 simulation and model checking operations, thus the evalua-
tion of each model’s fitness value took around 300ms. Overall, with a population
of M models and N generations, the number of calls to both the model checker
and the simulator is O(N * M). In our case study which contained 2,000 models
and a maximum of 100 generations, we had around 2 - 105 calls to the model
checker.

5 Related Work

Manual parameter estimation of a model can be performed, especially using in-
sight into the real-life system. The authors in [8] manually altered a model of the
MAPK pathway to change the behaviour from EGF stimulation to NGF stim-
ulation. They focus their estimation to parameters which have been identified
through biochemical experiments as possible targets to explain this difference.
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critical parameters
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Fig. 4. From top-left to bottom right, the convergence of varying; V_28 only, the critical
parameters, the critical parameters without V_28 and all parameters. The fitness of the
best model in the population (solid) is shown as well as the average fitness of the models
(dashed).

This work was accomplished using computational tools, such as a continuous
simulator, however it relied heavily on manual inspection of simulation outputs.
As such, the degree to which the model could be varied was limited to the amount
of manual inspection possible. Hence, it was infeasible for the authors to vary
the parameters within a large range or vary parameters in parallel.

Automated parameter estimation approaches employ a function which re-
turns a value of how close model’s behaviour is to some desired behaviour. A
search algorithm can be used to alter the model to minimise the behavioural
distance. Representing the desired behaviour using target data derived from
experiments on the real-life system being modelled is an obvious choice. Ap-
proaches to parameter estimation using target data are studied and reviewed in
[5]. Many functions can compute the difference of a model’s output to the target
data, such as Maximum Likelihood, Bayes and Weighted Least Squares.

However, the target data of models of biochemical systems results from wet-
lab experiments. The data produced from such experiments is typically noisy and
sparse with relative concentrations [20]. Any function calculating the difference
of the output of a biochemical system model to the target data should account for
this. [20] used weights on time-series data derived from wet-lab experiments to
account for noise. Furthermore, a Bayesian approach to estimating the difference
in model output and target data is the subject of [4].

Although the literature contains approaches to parameter estimation ap-
proaches using target data, we found little evidence of implementing parame-
ter estimation with a target behaviour expressed in temporal logic. The closest
we have found is [21] which specifies the expected behaviour of a continuous
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model of a biochemical pathway in the LTL temporal logic. The parameters in
the model are varied in some range until a satisfying parameter is found and
returned. However, this approach works only for the continuous world and the
authors note the computational expense of parameter scans of multiple variables
in parallel. They express desire for a “multi-valued measure of satisfaction” of a
temporal property rather than the boolean result of LTL checking. This would
facilitate the use of LTL as the target function in a search algorithm, allowing
many parameters to be varied in parallel.

6 Conclusion

We have shown how we have used probabilistic temporal logic descriptions of
biochemical pathway behaviours as the basis for a model checking approach to
the parameter estimation of biochemical pathways. This is the first step in a
general methodology for behaviour driven model construction.

A key aim of our approach is to be able to operate in both the stochastic and
continuous worlds. The PLTLc temporal logic and its simulation-based model
checker operate in both these worlds. It is especially important that the model
checker is simulation-based as the use of current analytical model checker would
be computationally infeasible due to the well-known state space explosion. This
is further exacerbated when used within a search algorithm which will typically
have many calls to the model checker — 2-10° in our case study. Furthermore, a
novel aspect of the numerical constraints in PLTLc is that they can be applied
in both the stochastic and continuous worlds; this is crucial to the calculation
of the distance of a model’s behaviour to the desired behaviour.

We have demonstrated our approach through a case study of a continuous
model of the well-known MAPK signalling pathway. This model has previously
been manually explored in [8]. They identify a single parameter which when
modified by a 40-fold increase produced the desired behaviour. Having first char-
acterising the desired behaviour in PLTLc, we then automatically identified a set
of critical parameters. We then used our MC2(GA) system to estimate the values
of the critical parameters and discovered novel kinetic rate constant parameter
sets which produce the desired behaviour. These include parameter sets which
do not require varying the parameter identified in [8]. Finally we showed that
the computational system can operate with high dimensional parameter spaces
by estimating the values of all 65 kinetic rate constants in the model.

The case study presented in this paper is of a continuous model of a biochem-
ical pathway. However, the theory underlying this approach has been described
for both the stochastic and continuous worlds. We are now working on apply-
ing this analysis to a stochastic model. Furthermore, we are currently able to
estimate the kinetic rate constant and initial concentration/mass values in the
model, however we could define theory to vary the model topology (adding, re-
moving or altering reactions). We then could answer questions such as what are
the topologies which give rise to particular behaviours of interest. Finally, PLTLc
is rather unfriendly to a biologist who is not well versed in temporal logic. We
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are now developing a user-friendly interface for biologists to describe behaviours
using PLTLc.

The computational system, MC2(GA), together with the case study results

are available at: www.brc.dcs.gla.ac.uk/software/mc2/mc2ga_bf.
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